77 research outputs found

    Automatic, fast and robust characterization of noise distributions for diffusion MRI

    Full text link
    Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g. coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.Comment: v2: added publisher DOI statement, fixed text typo in appendix A

    Mixed-Model Noise Removal in 3D MRI via Rotation-and-Scale Invariant Non-Local Means

    Get PDF
    Mixed noise is a major issue influencing quantitative analysis in different forms of magnetic resonance image (MRI), such as T1 and diffusion image like DWI and DTI. Using different filters sequentially to remove mixed noise will severely deteriorate such medical images. We present a novel algorithm called rotation-and-scale invariant nonlocal means filter (RSNLM) to simultaneously remove mixed noise from different kinds of three-dimensional (3D) MRI images. First, we design a new similarity weights, including rank-ordered absolute difference (ROAD), coming from a trilateral filter (TriF) that is obtained to detect the mixed and high-level noise. Then, we present a shape view to consider the MRI data as a 3D operator, with which the similarity between the patches is calculated with the rigid transformation. The translation, rotation and scale have no influence on the similarity. Finally, the adaptive parameter estimation method of ROAD is illustrated, and the effective proof that validates the proposed algorithm is presented. Experiments using synthetic data with impulse noise, Rician noise, and the real MRI data confirm that the proposed method yields superior performance compared with current state-of-the-art methods

    The contribution of Real Madrid’s first five European Cups to the emergence of a common football space

    Get PDF
    Real Madrid won the first five editions of the European Champion Clubs’ Cup (now formally known as the UEFA Champions League, and to which we will refer hereon as the European Cup) between 1956 and 1960, contributing decisively to the competition’s consolidation. The tournament’s history started towards the end of 1954, when a journalist of the French sports daily L’Équipe, Gabriel Hanot, published an article arguing the need to organise a competition that could bring together the champions of every European league. However, this was not an original proposal. Thirty years before Hanot’s article proposals for such a football competition were circulated among the game’s ruling elite. Unfortunately, at that time the lack of a good transport infrastructure to travel through Europe discouraged the proposers which, instead, turned their attention to regional supranational competitions, such as the Mitropa Cup or the Latin Cup. The first five editions of the European Cup witnessed as many victories of Real Madrid, thus forging an indissoluble bond between the competition and the Spanish club. These five European titles did not only cement the supremacy of Real Madrid on the pitch as a great football team, but they also contributed to the consolidation of the European Cup itself in the public’s imaginary. We also argue that given the expectations raised by Real Madrid’s triumphs across Europe those matches might have contributed as well to the emergence of a European football space. Since 1955 Real Madrid occupied an ever increasing space in the press across Europe. Real Madrid was then considered as the best expression of modernity in football. This chapter aims to analyse the meaning of these five European Cup titles for the emergence and definition of a nascent European football space. We, of course, also question whether such a common space can be found. The chapter explores in depth the reasons behind Real Madrid’s enthusiasm with the new European competition. We also examine the social impact that Real Madrid’s hegemony in the European Cup had in the context of Spain’s international isolation during General Franco’s dictatorship (1939-1975). In order to achieve the above mentioned objectives, the chapter relies on thematic analysis of selected publications in the Spanish and British press during those years. Moreover, we have also relied on a review of academic literature on the role of Real Madrid during the Franco dictatorship years, mainly the 1950s and 60s. This chapter is part of wider on-going research. In this research we examine the content of two Spanish dailies (ABC and Marca) and three British newspapers (The Guardian, The Times and the Daily Mirror). We searched these newspapers for content related to Real Madrid on specific dates: The semifinal games (two legs) and the final of each one of the five years where Real Madrid won the European Cup. We searched for content the day of each match, the day before and two days after each one of the matches. This chapter is a presentation of the findings obtained through thematic analysis of the data obtained through those searches

    The QUIJOTE experiment: project overview and first results

    Full text link
    QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel, Spain (2014

    Data preparation protocol for low signal-to-noise ratio fluorine-19 MRI

    Get PDF
    Fluorine-19 MRI shows great promise for a wide range of applications including renal imaging, yet the typically low signal-to-noise ratios and sparse signal distribution necessitate a thorough data preparation.This chapter describes a general data preparation workflow for fluorine MRI experiments. The main processing steps are: (1) estimation of noise level, (2) correction of noise-induced bias and (3) background subtraction. The protocol is supplemented by an example script and toolbox available online.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure

    Broad-band high-resolution rotational spectroscopy for laboratory astrophysics

    Get PDF
    We present a new experimental set-up devoted to the study of gas phase molecules and processes using broad-band high spectral resolution rotational spectroscopy. A reactor chamber is equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole range of the Q (31.5-50 GHz) and W bands (72-116.5 GHz) is available for rotational spectroscopy observations. The receivers are equipped with 16 × 2.5 GHz fast Fourier transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one-third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations, and integration times as long as 2.4 × 105 s have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas, and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by the rotational spectrum, and via mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz, allowing the accurate determination of its rotational and distortion constants and its search in space.We thank the European Research Council for funding support under Synergy Grant ERC-2013-SyG, G.A. 610256 (NANOCOSMOS). IT, VJH, and JLD acknowledge additional partial support from the Spanish State Research Agency (AEI) through grant FIS2016-77726-C3-1-P. JAMG, LM, and GS acknowledge additional partial support from the Spanish State Research Agency (AEI) through grant MAT2017-85089-C2-1R. We thank David López Romero for his help during the process of installation, commissioning, and cleaning of the chamber. We would like to thank Kremena Makasheva for the useful comments and suggestions during the experiments with Hexamethyldisiloxane. We would also like to thank Rosa Lebrón, Jesús Quintanilla, and Cristina Soria for providing us with the sample of N-ethylformamide. Sandra I. Ramírez acknowledges support from the FONCICYT under grant number 291842. Celina Bermúdez thanks the Spanish Ministerio de Ciencia Innovación y Universidades for the Juan de la Cierva grant FJCI-2016-27983

    Automatic Nonlinear Filtering and Segmentation for Breast Ultrasound Images

    Get PDF
    Breast cancer is one of the leading causes of cancer death among women worldwide. The proposed approach comprises three steps as follows. Firstly, the image is preprocessed to remove speckle noise while preserving important features of the image. Three methods are investigated, i.e., Frost Filter, Detail Preserving Anisotropic Diffusion, and Probabilistic Patch-Based Filter. Secondly, Normalized Cut or Quick Shift is used to provide an initial segmentation map for breast lesions. Thirdly, a postprocessing step is proposed to select the correct region from a set of candidate regions. This approach is implemented on a dataset containing 20 B-mode ultrasound images, acquired from UDIAT Diagnostic Center of Sabadell, Spain. The overall system performance is determined against the ground truth images. The best system performance is achieved through the following combinations: Frost Filter with Quick Shift, Detail Preserving Anisotropic Diffusion with Normalized Cut and Probabilistic Patch-Based with Normalized Cut

    EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis

    Get PDF
    Pain is the predominant symptom for people with inflammatory arthritis (IA) and osteoarthritis (OA) mandating the development of evidence-based recommendations for the health professional’s approach to pain management. A multidisciplinary task force including professionals and patient representatives conducted a systematic literature review of systematic reviews to evaluate evidence regarding effects on pain of multiple treatment modalities. Overarching principles and recommendations regarding assessment and pain treatment were specified on the basis of reviewed evidence and expert opinion. From 2914 review studies initially identified, 186 met inclusion criteria. The task force emphasized the importance for the health professional to adopt a patient-centered framework within a biopsychosocial perspective, to have sufficient knowledge of IA and OA pathogenesis, and to be able to differentiate localized and generalized pain. Treatment is guided by scientific evidence and the assessment of patient needs, preferences and priorities; pain characteristics; previous and ongoing pain treatments; inflammation and joint damage; and psychological and other pain-related factors. Pain treatment options typically include education complemented by physical activity and exercise, orthotics, psychological and social interventions, sleep hygiene education, weight management, pharmacological and joint-specific treatment options, or interdisciplinary pain management. Effects on pain were most uniformly positive for physical activity and exercise interventions, and for psychological interventions. Effects on pain for educational interventions, orthotics, weight management, and multidisciplinary treatment were shown for particular disease groups. Underpinned by available systematic reviews and meta-analyses, these recommendations enable health professionals to provide knowledgeable pain management support for people with IA and OA

    Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies

    Get PDF
    The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise
    corecore